skip to main content


Search for: All records

Creators/Authors contains: "Desantiago, Ric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The epidermis of Chondrichthyan fishes consists of dermal denticles with production of minimal but protein-rich mucus that collectively, influence the attachment and biofilm development of microbes, facilitating a unique epidermal microbiome. Here, we use metagenomics to provide the taxonomic and functional characterization of the epidermal microbiome of theTriakis semifasciata(leopard shark) at three time-points collected across 4 years to identify links between microbial groups and host metabolism. Our aims include (1) describing the variation of microbiome taxa over time and identifying recurrent microbiome members (present across all time-points); (2) investigating the relationship between the recurrent and flexible taxa (those which are not found consistently across time-points); (3) describing the functional compositions of the microbiome which may suggest links with the host metabolism; and (4) identifying whether metabolic processes are shared across microbial genera or are unique to specific taxa. Microbial members of the microbiome showed high similarity between all individuals (Bray–Curtis similarity index = 82.7, where 0 = no overlap, 100 = total overlap) with the relative abundance of those members varying across sampling time-points, suggesting flexibility of taxa in the microbiome. One hundred and eighty-eight genera were identified as recurrent, includingPseudomonas,Erythrobacter,Alcanivorax,Marinobacter, andSphingopxisbeing consistently abundant across time-points, whileLimnobacterandXyellaexhibited switching patterns with high relative abundance in 2013,SphingobiumandSphingomonain 2015, andAltermonas,Leeuwenhoekiella,Gramella, andMaribacterin 2017. Of the 188 genera identified as recurrent, the top 19 relatively abundant genera formed three recurrent groups. The microbiome also displayed high functional similarity between individuals (Bray–Curtis similarity index = 97.6) with gene function composition remaining consistent across all time-points. These results show that while the presence of microbial genera exhibits consistency across time-points, their abundances do fluctuate. Microbial functions however remain stable across time-points; thus, we suggest the leopard shark microbiomes exhibit functional redundancy. We show coexistence of microbes hosted in elasmobranch microbiomes that encode genes involved in utilizing nitrogen, but not fixing nitrogen, degrading urea, and resistant to heavy metal.

     
    more » « less
  2. Abstract

    Interspecific interactions between plants influence plant phenotype, distribution, abundance, and community structure. Each of these can, in turn, impact sediment biogeochemistry. Although the population and community level impacts of these interactions have been extensively studied, less is known about their effect on sediment biogeochemistry. This is surprising given that many plants are categorized as foundation species that exert strong control on community structure. In southern California salt marshes, we used clipping experiments to manipulate aboveground neighbor presence to study interactions between two dominant plants, Pacific cordgrass (Spartina foliosa) and perennial pickleweed (Sarcocornia pacifica). We also measured how changes in cordgrass stem density influenced sediment biogeochemistry. Pickleweed suppressed cordgrass stem density but had no effect on aboveground biomass. For every cordgrass stem lost per square meter, porewater ammonium increased 0.3–1.0 µM. Thus, aboveground competition with pickleweed weakened the effects of cordgrass on sediment biogeochemistry. Predictions about plant–soil feedbacks, especially under future climate scenarios, will be improved when plant–plant interactions are considered, particularly those containing dominant and foundation species.

     
    more » « less